COURSE INFORMATON							
Course Title	Code	Semester	L+P Hour	Credits	ECTS		
Advanced Biomaterials for Imaging and Radiology	BME531		(3+0+0)	3	10		

Prerequisites

Language of Instruction	English
Course Level	Master's Degree
Course Type	Technical Elective
Course Coordinator	Prof. Dr. Ali Ümit Keskin
Instructors	Assist. Prof. Feride Şermin UTKU
Assistants	
Goals	To provide students knowledge on types, application and production of biomaterials used in radiology and imaging.
Content	Basics of nanomaterials, biomaterials used in radiology and imaging, as well as light emitting/detecting and conducting/insulating systems, such as photonic crystals, nanowire heterostructure photodetectors, self-assembled nano-dielectrics, organic light emitting diodes and photovoltaics, transparent conducting thin films, plasmonics, single-molecule electronics. The polymeric biomaterials, proteins and tags used in delivery of radioactive materials, gold nanoparticles, and photonic crystals.

Course Learning Outcomes	Program Learning Outcomes	Teaching Methods	Assessment Methods
Basics of material selectrical, optical, and materials properties of biomaterials	_	1,2,3	A,C,D
Types of biomaterials use radiology and imaging	ed in 2,4,5,6,7,11	1,2,3	A,C,D
Polymeric biomaterials us delivery of radioactive ma	2,4,3,0,/,11	1,2,3	A,C,D
4) Gold nanoparticles, photo crystals.	2,4,5,6,7,11	1,2,3	A,C,D

Teaching Methods:	1: Lecture, 2: Question-Answer, 3: Lab, 4: Case-study
Assessment	A: Testing, B: Experiment, C: Homework, D: Project presentation

Methods:	
----------	--

	COURSE CONTENT					
Week	Topics	Study Materials				
1	Basics of material science and biocompatibility	Lecture notes, articles				
2	Electrical and magnetic propeties of biomaterials	Lecture notes, articles				
3	Optical propeties of biomaterials	Lecture notes, articles				
4	Radioactivity	Lecture notes, articles				
5	Basics of hierarchical biological nanomaterials	Lecture notes, articles				
6	Biomaterials used in radiology and imaging	Lecture notes, articles				
7	MID-TERM	Lecture notes, articles				
8	Polymeric biomaterials used in delivery of radioactive materials	Lecture notes, articles				
9	Proteins and tags	Lecture notes, articles				
10	Gold nanoparticles and photonic crystals	Lecture notes, articles				
11	Hybrid materials	Lecture notes, articles				
12	Production of hybrid materials	Lecture notes, articles				
13	Characterization of electrical and magnetic properties of materials	Lecture notes, articles				
14	Characterization of optical properties of materials	Lecture notes, articles				

	RECOMMENDED SOURCES
Textbook	
Additional Resources	

MATERIAL SHARING			
Documents			
Assignments			
Exams			

ASSESSMENT					
IN-TERM STUDIES NUMBER PERCENTA					
Mid-terms	1	50			
Homework	10	20			
Presentation	1	30			
Total		100			
CONTRIBUTION OF FINAL EXAMINATION TO OVERALL GRADE		40			
CONTRIBUTION OF IN-TERM STUDIES TO OVERALL GRADE		60			
Total		100			

COURSE CATEGORY	Expertise/Field Courses
-----------------	-------------------------

	COURSE'S CONTRIBUTION TO PROGRAM						
No Program Learning Outcomes		Contribution					
NO	Program Learning Outcomes		1	2	3	4	5
1	Ability to reach wide and deep knowledge through scientific research in the field of Biomedical Engineering, evaluate, interpret and apply.					X	
2	Ability to use scientific methods to cover and apply limited or missing knowledge, and to integrate the knowledge of different disciplines to identify, define, formulate solutions to complex engineering problems.				X		
3	Ability to construct Biomedical Engineering problems, develop methods to solve the problems and use innovative methods in the solution.				X		
4	Ability to develop new and/or original ideas, tools and algorithms; develop innovative solutions in the design of system, component or process.					X	
5	Ability to have extensive knowledge about current techniques and methods applied in Biomedical Engineering and their constraints.				X		
6	Ability to design and implement analytical modeling and experimental research, solve and interpret complex situations encountered in the process.					X	
7	Ability to use a foreign language (English) at least at the level of European Language Portfolio B2 in verbal and written communication.					X	
8	Ability to lead in multidisciplinary teams, develop solutions to complex situations and take responsibility.				X		
9	Ability to pass process and the results in Biomedical Engineering field, in national and international area in or outside of the field, systematically and clearly in written or oral form.				X		

10	Awareness of the social, legal, ethical and moral values and environmental dimensions. The ability to conduct research and implementation work within the framework of these values.	x
11	Awareness of the new and emerging applications in Biomedical Engineering field, and the ability to examine them and learn if necessary.	x
12	Ability to read, understand, present, critise research work and conduct original theoretical or applied research.	x

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION			
Activities	Quantity	Duration (Hour)	Total Workload (Hour)
Course Duration (Excluding the exam weeks: 12x Total course hours)	12	3	36
Hours for off-the-classroom study (Pre-study, practice)	14	5	70
Midterm examination	2	3	6
Homework	5	6	30
Presentation	1	20	20
Final examination	1	3	3
Total Work Load			240
Total Work Load / 25 (h)			9.6
ECTS Credit of the Course			10